Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29320, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644853

RESUMO

Water scarcity threatens agriculture and food security in arid regions like Saudi Arabia. The nation produces significant quantities of municipal wastewater, which, with adequate treatment, could serve as an alternative water source for irrigation, thereby reducing reliance on fossil and non-renewable groundwater. This study assessed the appropriateness of using treated wastewater (TWW) for irrigation in a dry coastal agricultural region in Eastern Saudi Arabia and its impact on groundwater resources. Field investigations were conducted in Qatif to collect water samples and field measurements. A multi-criteria approach was applied to evaluate the TWW's suitability for irrigation, including complying with Saudi Standards, the Irrigation Water Quality Index (IWQI), the National Sanitation Foundation water quality index (NSFWQI), and the individual irrigation indices. In addition, the impact of TWW on groundwater was assessed through hydrogeological and isotope approaches. The results indicate that the use of TWW in the study area complied with the Saudi reuse guidelines except for nitrate, aluminum, and molybdenum. However, irrigation water quality indices classify TWW as having limitations that necessitate the use for salt-tolerant crops on permeable and well-drained soils. Stable isotopic analysis (δ2H, δ18O) revealed that long-term irrigation with TWW affected the shallow aquifer, while deep aquifers were minimally impacted due to the presence of aquitard layer. The application of TWW irrigation has successfully maintained groundwater sustainability in the study area, as evidenced by increased groundwater levels up to 2.3 m. Although TWW contributes to crop productivity, long term agricultural sustainability could be enhanced by improving effluent quality, regulating irrigation practices, implementing buffer zones, and monitoring shallow groundwater. An integrated approach that combines advanced wastewater treatment methods, community involvement, regulatory oversight, and targeted monitoring is recommended to be implemented.

2.
Luminescence ; 39(2): e4683, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332469

RESUMO

This work explores the thermoluminescence (TL) and photoluminescence (PL) properties of Ag/Y co-doped zinc oxide (ZnO) nanophosphor. The proposed dosimeter was prepared by the coprecipitation method and sintered at temperatures from 400°C to 1000°C in an air atmosphere. Raman spectroscopy was studied to investigate the structural features of this composition. The new proposed dosimeter revealed two peaks at 150°C and 175°C with a small shoulder at high temperature (225°C). The PL spectrum showed strong green emissions between 500 to 550 nm. The Raman spectrum showed many bands related to the interaction between ZnO, silver (Ag), and yttrium oxide (Y2 O3 ). The rising sintering temperature enhanced the TL glow curve intensity. The Ag/Y co-doped ZnO nanophosphor showed an excellent linearity index within a dose from 1 to 4 Gy. The minimum detectable dose (MDD) of the Ag/Y co-doped ZnO nanopowder (pellets) equaled 0.518 mGy. The main TL properties were achieved in this work as follows: thermal fading (37% after 45 days at 1 and 4 Gy), optical fading (53% after 1 h and 68% after 6 h by exposure to sunlight), effective atomic number (27.6), and energy response (flat behavior from 0.1 to 1.3 MeV). Finally, the proposed material shows promising results nominated to be used for radiation measurements.


Assuntos
Óxido de Zinco , Temperatura , Dosimetria Termoluminescente/métodos , Prata/química
3.
Nanomaterials (Basel) ; 12(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080105

RESUMO

This work examined the thermoluminescence dosimetry characteristics of Ag-doped ZnO thin films. The hydrothermal method was employed to synthesize Ag-doped ZnO thin films with variant molarity of Ag (0, 0.5, 1.0, 3.0, and 5.0 mol%). The structure, morphology, and optical characteristics were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and UV-vis spectrophotometers. The thermoluminescence characteristics were examined by exposing the samples to X-ray radiation. It was obtained that the highest TL intensity for Ag-doped ZnO thin films appeared to correspond to 0.5 mol% of Ag, when the films were exposed to X-ray radiation. The results further showed that the glow curve has a single peak at 240-325 °C, with its maximum at 270 °C, which corresponded to the heating rate of 5 °C/s. The results of the annealing procedures showed the best TL response was found at 400 °C and 30 min. The dose-response revealed a good linear up to 4 Gy. The proposed sensitivity was 1.8 times higher than the TLD 100 chips. The thermal fading was recorded at 8% for 1 Gy and 20% for 4 Gy in the first hour. After 45 days of irradiation, the signal loss was recorded at 32% and 40% for the cases of 1 Gy and 4 Gy, respectively. The obtained optical fading results confirmed that all samples' stored signals were affected by the exposure to sunlight, which decreased up to 70% after 6 h. This new dosimeter exhibits good properties for radiation measurement, given its overgrowth (in terms of the glow curve) within 30 s (similar to the TLD 100 case), simple annealing procedure, and high sensitivity (two times that of the TLD 100).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA